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We represent and discuss a theory of gravitational holography in which all the involved
waves; subject, reference and illuminator are gravitational waves (GW). Although
these waves are so weak that no terrestrial experimental set-ups, even the large LIGO,
VIRGO, GEO and TAMA facilities, were able up to now to directly detect them they
are, nevertheless, known under certain conditions (such as very small wavelengths) to be
almost indistinguishable (see P. 962, in Misner, C. W., Thorne, K. S., and Wheeler, J. A.
(1973). Gravitation, Freeman, San Francisco.) from their analogue electromagnetic
waves (EMW). We, therefore theoretically, show, using the known methods of optical
holography and taking into account the very peculiar nature of GW, that it is also
possible to reconstruct subject gravitational waves.
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1. INTRODUCTION

The theory of electromagnetic (optical light, X-rays, γ -rays) and matter
(electrons, atoms) holography is well established (see, for example, Barton, 1988;
Collier et al., 1971; Gabor, 1948, 1949,1951; Han et al., 1991; Harp et al., 1990;
Herman et al., 1992; Korecki et al., 1997; Sadlin et al., 1991; Tegze and Faigel,
1991, 1996). Theoretical and experimental set-ups have become possible not only
for the holographic reconstruction of large macroscopic objects in the optical do-
main (Collier et al., 1971; Gabor, 1948, 1949, 1951; Kogelnik, 1969) but also for
the microscopic resolution and imaging of minute objects such as molecules and
atoms. What makes this imaging possible is the advancement of the early hologra-
phy (Collier et al., 1971; Gabor, 1948,1949,1951; Kogelnik, 1969) first to the X-ray
(Tegze and Faigel, 1991,1996) and γ -ray (Korecki et al., 1997) domains and then to
the generation and application of holograms by using matter waves such as electron
emission from atoms (Barton, 1988; Han et al., 1991; Harp et al., 1990; Herman et
al., 1992; Sadlin et al., 1991; Soroko, 2000; Spence and Koch, 2001; Szöke, 1986).
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In this work we wish to further, theoretically, expand and enlarge the diversity
of waves used to record and reconstruct an initial subject. We use in this context
gravitational waves which are so unique and different compared to electromagnetic
and matter waves. First their interaction with matter is so weak that no direct2

experimental set-up, even the giant LIGO (Abbott et al., 2004), VIRGO (Acernese
et al., 2002), GEO (Danzmann, 1995) and TAMA (Ando and TAMA collaboration,
2002) facilities have succeeded up to now to directly detect them (see, for example
a null result report (Abbott et al., 2004) of a mutual search of LIGO and GEO
for GW from the pulsar J1939+2134). Second, these waves, which are “ripples
of curvature” (Misner et al., 1973), influence the space-time through which they
proceed by further curving it so as to increase or decrease the interval between
the geodesics travelled by test particles (Misner et al., 1973). Thus, holography
which is thought to result from the diffraction and changes of the form of the
passing waves by solid spatial objects may be discussed also from the point of
view as if these diffraction and form changes result from passing through a region
of spacetime in which the curvature is stronger than other regions (see Fig. 2).

The former discussion leads to the realization that one may diffracts and
changes the form of an EMW passing through some finite region of space-time by
two equivalent ways; (1) by some solid object placed in this region and (2) by a
strong curvature (stronger than its values in neighbouring regions) imprinted in this
region by GW. Moreover, one may, theoretically, obtain very similar diffractions
for these two cases if he can adjust the external form of the spatial object to be
such that an EMW which encounters it will be changed in the same manner as
if it have passed through the region of strong curvature. Note that the principle
of finite region with stronger curvature than other regions stands at the basis of
all the different efforts made for detecting GW from the early mechanical bars of
Weber (Weber, 1960,1969,1970) to the later mentioned interferometric detectors
(Misner et al., 1973).

Thus, one may discuss holography, as done here, by considering regions of
stronger curvature (compared to neighbouring regions) without having to place in
these regions any solid spatial object. We note in this context that already in the
early holography (Collier et al., 1971) the presence of a realistic solid objects were
thought in certain cases to be unnecessary for recording real holograms such as,
for example, in the computer-generated holograms (Brown and Lohmann, 1969;
Collier et al., 1971; Lesem et al., 1969).

We must note that we neither try here to find the most general and
complete theory of possible GW holography nor to discuss the fundamental
aspects of the gravitational field as, for example, done in the works of

2 Gravitaional waves were proved to exist by Taylor and Hulse (which receive the Nobel price in 1993
for this discovery) through indirect astronomical observations using radio telescope that measure the
spiraling rate of two neighbouring neutron stars.
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Finkelstein et al (see, for example (Finkelstein and Gibbs, 1993) and
http://www.physics.gatech.edu/qr/papers.htm). We use the remarked property em-
phasized in (Misner et al., 1973) that the GW, under certain conditions, is indis-
tinguishable from the EMW to also discuss, at least theoretically, a possible
GW holography. For this it is sufficient to discuss plane GW’s in the simplified
transverse-traceless (TT) gauge (Misner et al., 1973) where these waves are purely
spatial (Misner et al., 1973).

Thus, following the conventional holography (Collier et al., 1971), which
necessitates a second reference wave which do not touch the solid object, we
assume here another GW, denoted R, which do not pass through the region passed
by the former GW (called S for subject) and serves as a reference to S. The two
waves S and R are supposed to meet and interfere in a second space-time region
which serves as a hologram just as the subject and reference waves in optical
holography meet and interfere in the hologram.

Also, as in optical hologram (Collier et al., 1971) one may assume that
the gravitational hologram is formed by the exposure (interference (Jenkins and
White, 1976) of S and R) and the duration of it. But in contrast to the holograms
recorded by EMW which are solid spatial objects made by altering, through expo-
sure, the transmission or absorption properties of the recorded materials (Collier
et al., 1971) (and include the plane and volume photosensitive and photographic
emulsion holograms (Collier et al., 1971)) here the hologram can not be a similar
solid object which records the interference of S and R. This is because, as men-
tioned, the effect of any GW is to increase space-time curvature (Misner et al.,
1973) and this is, naturally, imprinted and recorded in the space-time itself (and
not in any solid 3-dimensional object in it) so that a wave (EMW) passing through
this region is difracted. Thus, the related hologram is, actually, a finite space-time
region which records the interference between the GW’s S and R so that if, as in
the usual holography, the reference wave R is later sent again through this region,
as illuminator, one reconstructs the space-time changes made by the subject wave
S in its original region. We, theoretically, show that this is, actually, the case.

We note in this context that, in contrast to optical holography which records
and reconstructs a 3-dimensional solid object where the temporal evolution is
generally everaged and neglected (Collier et al., 1971) the case for the later
microscopic holography is different. This is so, especially, for matter waves such
as electrons which must be discussed in quantum terms (Ayman et al., 2001)
for which time evolution is very important (Schiff, 1968). It has been shown,
for example, in (Soroko, 2000) that the discussion of holograms made by matter
waves has effects similar to those resulting from volume holograms (Collier et al.,
1971; Kogelnik, 1969) except for replacing the spatial third dimension with the
time variable. This emphasis of the time evolution is, especially, valid for the
holography discussed here where, as described, the passing GW acts directly on
the space-time medium itself and not on any spatial object in it. We, therefore,
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Fig. 1. The subject and reference waves are shown as rays originating at their common source
at C from there they advance first to their respective points S and R and then to the small
area A. It is also shown, for each wave, the two perpendicular components which are parallel
and perpendicular to the plane of the figure and which denote the directions of polarization.
The undesirable and desirable components of these polarizations (see text) are also shown.

emphasize these temporal changes and assume that the spatial components of the
finite space-time region in which the waves S and R meet and interfere is very
small (the small thin area A in Fig. 1).

In Section II we use the linearized weak field theory and introduce the relevant
subject and reference GW together with their appropriate polarization components.
In Section III we calculate the relevant intensities and the exposure. In Section IV
we represent the hologram transmittance over the small area A and calculate the
required reconstructed wave which will be found to be proportional to the original
subject wave S. We conclude and summarize the obtained results in a Concluding
Remarks Section. Also, since GW are, as mentioned, indistinguishable, under
certain conditions, from EMW we use some known optical coherence expressions
(Born and Wolf, 1964) which are introduced in a separate Appendix.

2. THE SUBJECT AND REFERENCE GW
AND THEIR POLARIZATIONS

Figure 1 shows a schematic representation of the arrangement used in this
discussion. In this set-up array we assume an initial GW which have been detected
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at the point C maybe by one or some collaboration of the mentioned interferometric
detectors. This wave may be assumed to be divided, through a future technology,
into two components which propagate to the two different regions denoted in Fig. 1
as S and R. From these two regions the relevant GW’s, denoted also as S and R,
propagate to the small region A where they meet and interfere. As mentioned,
we use the linearized weak field approximation (Bergmann, 1976; Misner et al.,
1973) of general relativity which although refers to the surrounding space-time
as if it were flat (as in special relativity) it, nevertheless, discuss experiments and
their evolutions in a curved space-time formalism. In this theory the metric tensor
components are given by (Misner et al., 1973)

gµν = ηµν + hµν + O([hµν]2), (1)

where ηµν is the Lorentz metric of special relativity (Bergmann, 1976; Misner
et al., 1973) and hµν is a small perturbation. This hµν is identified with GW (Misner
et al., 1973; Thorne, 1980) which is itself a propagating perturbation of space-time
(Misner et al., 1973; Thorne, 1980). As known (Misner et al., 1973), one of the
simplest gauges to which one may subject the tensor hµν is the transverse-traceless
gauge (TT) in which hµν has the smallest number of components (Misner et al.,
1973; Thorne, 1980). This is because in this gauge (Misner et al., 1973; Thorne,
1980) hµν is purely spatial so h0µ = 0 and it is also transverse to the direction of
its propagation so hij,j = 0. Its tracelessness introduces the additional condition
of hjj = 0. Thus, the gravitational wave is traditionally signified (Misner et al.,
1973) as hT T

µν which is the tensor hµν in the T T gauge. We take into account
that hT T

µν is, as mentioned, purely spatial so we follow the traditional holographic
notation and denote the relevant subject and reference waves by S(x, y, z, t) and
R(x, y, z, t) respectively.

We assume that S(x, y, z, t) and R(x, y, z, t) are plane waves propagating
along the respective vectors ns and nr and denote the two orthogonal directions
which are perpendicular to ns by es1 and es2 and those perpendicular to nr by er1 and
er2 . Thus, following the notation in (Misner et al., 1973) (where the discussion
there refers to propagation along the z axis (see Chapter 35 there)) we denote
the two unit linear polarization tensors of S(x, y, z, t) as e+s

, e×s
and those of

R(x, y, z, t) as e+r
, e×r

and write

e+s
= es1 ⊗ es1 − es2 ⊗ es2 , exs

= es1 ⊗ es2 + es2 ⊗ es1 (2)

e+r
= er1 ⊗ er1 − er2 ⊗ er2 , exr

= er1 ⊗ er2 + er2 ⊗ er1

where ⊗ is the tensor product. Note that each GW have, like its EMW ana-
logue, two polarizations. Thus, if, for example, the propagating GW advances
vertically through an interferometric detector then one polarization, actually, de-
scribes the known tidal forces (Misner et al., 1973) which oscillate along the
directions (Thorne, 1980) of east-west and north-south. The other polarization
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describes those tidal forces which oscillate along the directions (Thorne, 1980)
of northeast-southwest and northwest-southeast. In the following we assume the
subject and reference waves to be polychromatic so their sources emit light at
several frequencies. We denote by r the position vector of a point in space and
signify the respective direction cosines of ns , nr by cos(αs), cos(βs), cos(γs) and
cos(αr ), cos(βr ), cos(γr ). Thus, taking into account that k = 2π

λ
and defining the

spatial frequencies ξs = cos(αs )
λ

, ηs = cos(βs )
λ

, ζs = cos(γs )
λ

, ξr = cos(αr )
λ

, ηr = cos(βr )
λ

,
ζr = cos(γr )

λ
one may write, for example, the subject and reference GW as

S(x, y, z, t) = �[
(A+s

e+s
+ A×s

e×s
)eikr·ns (c0e

i2πf t

+ c1e
i2π(f +ε1)t + c2e

i2π(f +ε2)t + · · ·)]

= �
[
(A+s

e+s
+ A×s

e×s
) exp[ik(x cos(αs) (3)

+ y cos(βs) + z cos(γs)]e
i2πf t

∑

i

cie
i2πεi t

]

= �[(A+s
e+s

+ A×s
e×s

) ·
× exp[i2π (ξsx + ηsy + ζsz)]ei2πf t · g(t)]

R(x, y, z, (t + τ )) = �[
(A+r

e+r
+ A×r

e×r
)eikr·nr

(
c0e

i2πf (t+τ )

+ c1e
i2π(f +ε1)(t+τ ) + c2e

i2π(f +ε2)(t+τ ) + · · · )]

= �
[
(A+r

e+r
+ A×r

e×r
) exp[ik(x cos(αr ) + y cos(βr ) (4)

+ z cos(γr )] · ei2πf (t+τ )
∑

i

cie
i2πεi (t+τ )

]

= �[
(A+r

e+r
+ A×r

e×r
) · exp[i2π (ξrx

+ ηry + ζrz)] · ei2πf (t+τ ) · g(t + τ )
]

where � denotes the real part of the following complex expression. The amplitudes
A+s

, A×s
and A+r

, A×r
refer respectively to the modes of polarizations e+s

, e×s
and

e+r
, e×r

. In the following, for ease of notation, we denote s0 = A+s
e+s

+ A×s
e×s

and r0 = A+r
e+r

+ A×r
e×s

. The parameter τ in Equation (4) is defined by cτ ,
where c is the velocity of the GW which is equal to the velocity of light, so that cτ

is the path difference between the paths of S and R as they propagate from their
places at S and R (see Fig. 1) to the small area A. At the last results of Eqs. (3)–(4)
we have used the definitions g(t) = ∑

i cie
i2πεi t and g(t + τ ) = ∑

i cie
i2πεi (t+τ )

where we assume that since S and R have common source (represented by the
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point C in Fig. 1) the quantities εi and the coefficients ci are the same in g(t) and
g(t + τ ).

The subject wave S from Equation (3) may be decomposed into a component,
denoted S=, which is polarized parallel to the polarization direction of the reference
wave R and another components, denoted S+, which is perpendicular to this
direction. Thus, denoting the angle between the polarization directions of S and R

from Eqs. (3)–(4) by W (which is the same as that between the propagating rays
S and R (see Fig. 1 and the text after Eqs. (5)–(6)) one may write S= and S+ as

S= = �[s0 · exp[i(2πξsx + 2πηsy + 2πζsz)]ei2πf t · g(t) · cos(W )] (5)

S+ = �[s0 · exp[i(2πξsx + 2πηsy + 2πζsz)]ei2πf t · g(t) · sin(W )] (6)

In Figure 1 we show not only the propagating GW’s of S and R but also the
two components, for each GW, which are parallel and perpendicular to the plane
of the figure. These components serve as polarization vectors. Note, however, that
the angle between the polarization components of S and R which are parallel to the
plane of Fig. 1 is W (which equals the angle between the propagating S and R (see
Fig. 1)) whereas the angle between the polarization components perpendicular to
this plane is zero. Thus, refering to the later components one may realize from
Equations (5)–(6) that the component S+ is zero whereas S= is maximum. In other
words, the desirable components of polarization are those perpendicular to Fig. 1
as written explicitly in this figure. Note that this criterion applies also for optical
holography (Collier et al., 1971). We continue to use in the text the angle W since
we are, especially, interested in the intensities of the GW and for this, as realized
from the following section, one may obtain the same result regardless if he uses
the perpendicular or the parallel components of polarization.

The effect of the polarizing tensors of either the gravitational plane wave S

or R upon the space-time medium is best understood from Fig. 2 which, actually,
shows the left half of Figure 35.2 in (Misner et al., 1973). This figure shows
how a closed circular (elliptic) array of test particles are changed, due to the
resulting increased curvature, to elliptic (circular) array. These changes, as seen
from the figure, are periodic and their exact form depend upon the values of the
phase (shown in degrees at the right hand side the figure) and upon the unit linear
polarization tensor.

3. THE INTENSITIES AND EXPOSURE OF THE GW

The separate intensities of the waves R(x, y, (t + τ )), S= and S+, denoted
IR(t + τ ), IS= (t) and IS+ (t), at the small area A are found from Eqs. (4), (5)–(6)
as follows

IR(t + τ ) = 〈R(x, y, (t + τ ))R∗(x, y, (t + τ ))〉 = r2
0 〈g(t + τ )g∗(t + τ )〉 (7)
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Fig. 2. The figure shows the effect of a GW passing through a region in which some test particles
are shown arrayed in a closed form. The presence of the GW causes the space-time in this region
to be more curved than usually when it is absent and this in turn changes the closed form of the
array of test particles from a circular (elliptic) to an elliptic (circular) form. This behaviour, for
the gravitational plane wave discussed here, is repeated in a periodic fashion and depends upon
the values assumed by the phase as shown at the right (in degrees) and upon the corresponding
nature of the polarization tensor ex or e+.

IS= (t) = 〈S=(t)S∗
=(t)〉 = s2

0〈g(t)g∗(t)〉 cos2(W ) (8)

IS+ (t) = 〈S+(t)S∗
=(t)〉 = s2

0〈g(t)g∗(t)〉 sin2(W ) (9)

The overal intensity at the area A of the waves R(x, y, (t + τ )), S=, and S+
is the sum of the separate intensities from Eqs. (7)–(9) plus the interference
formed by these waves. But we must note that no interference is formed from
S+ and the polarization vector of R(x, y, (t + τ )) because, as mentioned, they
are perpendicular to each other. Thus, for interference we should take only the
interaction of S= and the polarization direction of R(x, y, (t + τ )) which are
parallel to each other. In other words, the required total intensity at the small area
A is

Itotal = IR(t + τ ) + IS= (t) + IS+ (t) + 2�[〈R(x, y, (t + τ ))S∗
=〉]

= r2
0 〈g(t + τ )g∗(t + τ )〉 + s2

0〈g(t)g∗(t)〉 cos2(W ) + s2
0〈g(t)g∗(t)〉

× sin2(W ) + 2�[r0s0 cos(W ) · exp[i2π ((ξr − ξs)x

+ (ηr − ηs)y + (ζr − ζs)z)] · ei2πf τ 〈g(t + τ )g∗(t)〉] (10)
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From Eq. (A7) in the Appendix one may realize (Collier et al., 1971) that since
|µ̂T (τ )| = |µT (τ )| where µ̂T (τ ) = µT (τ )e−i2πf τ = 〈g(t+τ )g∗(t)〉

〈g(t)g∗(t)〉 it is possible to

write µ̂T (τ ) = |µT (τ )| · eiζ (τ ) where eiζ (τ ) is a phase factor. Thus, using the last
equation one may write the total intensity from Eq. (10) as (Collier et al., 1971)

Itotal = r2
0 〈g(t + τ )g∗(t + τ )〉 + s2

0〈g(t)g∗(t)〉 + 2�[r0s0 cos(W )

× exp[i2π ((ξr − ξs)x + (ηr − ηs)y + (ζr − ζs)z)]ei2πf τ |µT (τ )| · eiζ (τ )

×〈g(t)g∗(t)〉] = r2
0 〈g(t + τ )g∗(t + τ )〉 + s2

0〈g(t)g∗(t)〉
+ 2r0s0 cos(W ) · |µT (τ )| cos(β(x, y, z, τ ))〈g(t)g∗(t)〉, (11)

where β(x, y, z, t) = 2π [(ξr − ξs)x + (ηr − ηs)y + (ζr − ζs)z + f τ ] + ζ (τ ).
The intensity from Eq. (11) is recorded on the hologram through exposure E

which is assumed to be, in analogy with optical holograms, proportional (Collier
et al., 1971) to the product of the intensity Itotal and the exposure time τe. That
is, denoting the proportionality constant by C one may write, using Eq. (11), the
exposure as

E(x, y, z, t) = CτeItotal = Cτe[s2
0〈g(t)g∗(t)〉 + r2

0 〈g(t + τ )g∗(t + τ )〉
+ 2r0s0 cos(W )|µT (τ )|〈g(t)g∗(t)〉 cos(β(x, y, z, τ ))]

= E0 + E1(x, y, z, t), (12)

where

E0 = Cτe

(
s2

0〈g(t)g∗(t)〉 + r2
0 〈g(t + τ )g∗(t + τ )〉)

E1(x, y, z, t) = 2Cτes0r0 cos(W )|µT (τ )|〈g(t)g∗(t)〉 cos(β(x, y, z, τ ))

4. THE HOLOGRAM TRANSMITTANCE AND
THE RECONSTRUCTED GW

Referring to the former equations one may realize that if the expression r2
0

s2
0

satisfies r2
0

s2
0

> 1 over the small area A then one also have r2
0

s2
0

> r0
s0

and consequently

E0 > E1 over this area A of the hologram. In such case, analogously to optical
holography (Collier et al., 1971), one may write the hologram transmittance over
the area A as a Taylor series (Collier et al., 1971)

tE = tE(E0) + E1
dtE
dE

∣∣∣
E0

+ 1

2
E2

1
d2tE
dE2

∣∣∣
E0

+ · · · (13)

In optical holography this representation of the transmittance is general and
includes the possibility of either amplitude or phase modulation by the hologram
(Collier et al., 1971). Now, (1): we assume that all the coefficients of second and



512 Bar

higher order terms in Eq. (13) d2tE
dE2 |E0 ,

d3tE
dE3 |E0 , ... are negligible and (2): that the

factor cos(β(x, y, z, τ )) from Eq. (12) is written as a sum of exponentials from
which the term 1

2e−iβ(x,y,z,τ ) is chosen (as done in optical holography (Collier
et al., 1971)) where β is given by the inline equation after Eq. (11). Thus, for
reconstructing the subject wave S(x, y, z, t) from Eq. (3) one illuminates the
hologram tE with the reference wave R(x, y, z, (t + τ )) from Equation (4) so
that the GW obtained from the exposure E1 (the constant E0 has no role in this
reconstruction) at the small area A is

Wr (x, y, z, t) = R(x, y, z, (t + τ ))tE = r0 · exp[i(2π (ξrx + 2πηry

+ 2πζrz))] · ei2πf (t+τ )g(t + τ )E1
dtE
dE

|E0

= Cτer
2
0 s0 cos(W )|µT (τ )|〈g(t)g∗(t)〉 · e−i(β(x,y,z,τ )) ·

× exp[i(2π (ξrx + 2πηry + 2πζrz))] · ei2πf (t+τ )g(t + τ )
dtE
dE

|E0

= Cτer
2
0 s0 cos(W )|µT (τ )|〈g(t)g∗(t)〉

× exp[i2π (ξsx + ηsy + ζsz)]e−iζ (τ ) · ei2πf tg(t + τ )
dtE
dE

|E0 (14)

In order to continue in our analytical reconstruction of the subject wave S(x, y, z, t)
we first show that g(t + τ ) · 〈g(t)g∗(t)〉 = g(t) · 〈g(t + τ )g∗(t)〉. This is done by
taking into account that g(t) = ∑

i cie
i2πεi t , g(t + τ ) = ∑

i cie
i2πεi (t+τ ) (see

the discussion after Equation. (4)) and 〈g(t)g∗(t)〉 = limT →∞ 1
2T

∫ T

−T
g(t)g∗(t)dt ,

〈g(t + τ )g∗(t)〉 = limT →∞ 1
2T

∫ T

−T
g(t + τ )g∗(t)dt (see Eq. (A5) in the Appendix).

Thus, integrating the elementary exponentials and taking the corresponding limits
T → ∞ one obtains the following results

〈g(t)g∗(t)〉 =
∑

i

|ci |2, 〈g(t + τ )g∗(t)〉 =
∑

i

|ci |2ei2πεiτ (15)

From the last equations, the definitions of g(t), g(t + τ ) and the discussion after
Eq. (4) about εi and ci which are the same in g(t) and g(t + τ ) one may realize
that

g(t + τ ) · 〈g(t)g∗(t)〉 =
∑

i

|ci |2ei2πεi (t+τ ) ·
∑

i

|ci |2

=
∑

i

|ci |2ei2πεi t ·
∑

i

ei2πεiτ |ci |2

= g(t) · 〈g(t + τ )g∗(t)〉, (16)
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which is what we set to prove. Using the last equation and Eq. (A7) in the Appendix
(from which we see, as mentioned after Eq. (10), that the equality |µ̂T (τ )| =
|µT (τ )| leads to µ̂T (τ ) = |µT (τ )| · eiζ (τ )) one may write the reconstructed wave
from Equation (14) as

Wr (x, y, z, t) = Cτer
2
0 s0 cos(W )|µT (τ )|〈g(t + τ )g∗(t)〉 exp[i2π (ξsx

+ ηsy + ζsz)] · ei2πf t e−iζ (τ ) · g(t)
dtE
dE

|E0

= Cτer
2
0 s0 cos(W )|µT (τ )|2 · 〈g(t)g∗(t)〉ei2πf t

× exp[i2π (ξsx + ηsy + ζsz)] · g(t)
dtE
dE

|E0 (17)

Now, taking into account our neglection (see the discussion after Eq. (13)) of
the coefficients of the higher order terms in Eq. (13) d2tE

dE2 |E0 ,
d3tE
dE3 |E0 , ... one may

realize that if d2tE
dE2 |E0 = 0 then dtE

dE
|E0 = constant . Thus, using the last result, the

definition of s0 as given after Eq. (4), and the first of Eq. (15) one may write the
reconstructed wave from Eq. (17) as

Wr (x, y, z, t) = constant · s0 · g(t)ei2πf t exp[i2π (ξsx + ηsy + ζsz)]

= constant · (A+s
e+s

+ A×s
e×s

)g(t)ei2πf t

× exp[i2π (ξsx + ηsy + ζsz)]

= constant · S(x, y, z, t), (18)

where S(x, y, z, t) is the subject wave given by Eq. (3). Thus, as in optical holog-
raphy, we see that the original subject wave has been reconstructed.

5. CONCLUDING REMARKS

We have discussed gravitational wave holography in which all the involved
waves; subject, reference and illumnator are gravitational waves. The nature of
these waves, compared to their electromagetic analogues, causes the resulting
holography to be somewhat unique. First, the interaction of these waves with
matter is so weak that no experimental set-up have, up to now, succeeded to di-
rectly3 detect them. Second, these waves act upon the space-time structure itself
by increasing its curvature so that any wave (for example, EMW) which passes
in this region undergoes similar changes as those occuring when encountering a
corresponding solid spatial object. That is, the same diffraction and form changes
in some finite region may result from either a strong space-time curvature in it

3 Gravitaional waves were proved to exist by Taylor and Hulse (which receive the Nobel price in 1993
for this discovery) through indirect astronomical observations using radio telescope that measure the
spiraling rate of two neighbouring neutron stars.
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compared to other neighbouring regions or from a corresponding suitably de-
signed solid object. Note that this is reminiscent of the famous Einstein “elevator”
(Bergmann, 1976) in which a man closed inside this accelerating cabin can not be
sure if this accelaration is due to a gravitational force all around or maybe he is
in a region absent of any gravitation and that other force pulls the cabin with the
known attraction of gravity.

The strong curvature imprinted by the GW upon the space-time medium
remains in this medium (Misner et al., 1973) even after the wave have completely
passed away (Misner et al., 1973) especially if this GW is strong enough or if it
has passed this region a large number of times (Misner et al., 1973).

In our discussion we have used the known methods of optical holograph
(Coyllier et al., 1971; Gabor, 1948,1949,1951) and, especially, the realization
(Misner et al., 1973) that, under certain conditions such as very small wavelength,
one can not, theoretically, diffentiate between GW and EMW. We have, thus,
shown that passing a reference GW (not in the same region passed by the subject
wave) and letting these two waves meet and interfere in some other space-time
region (hologram) then if this reference wave is again passed, as the corresponding
EMW illuminator, through this hologram the result will be a reconstruction of the
subject wave.

Although this discussion is purely theoretical one may hope that a future
advanced technology will be developed which will enable the next generation of
scientists to use and manipulate GW the same way we are able now to use EMW.

APPENDIX

We use here the mentioned characteristic of the almost theoretical identity
(valid under certain conditions such as very short wavelengths) between GW and
EMW and assume, as we do in the main text, that we may use the known results
(Born and Wolf, 1964) regarding the spatial and (or) temporal coherence between
two waves. We, thus, introduce here some relevant expressions (Born and Wolf,
1964; Collier et al., 1971) for the coherence between two complex electric waves
v1 and v2 which advance from points P1 and P2 at some screen to the point Q

at another. This is similar to the set-up in Fig. 1 in which the two GW’s S and R

propagate from the corresponding points S and R to the small area A. The time
average of the interference term between v1 and v2 is written as (Born and Wolf,
1964)

〈v1v∗
2 + v∗

1v2〉 = 2�〈v1v∗
2〉 (A1)

It has been shown in (Born and Wolf, 1964) that the time average from Equation
(A1) can be expressed in terms of the complex degree of coherence ϒ12(τ ) which
relates the correlation of v1 and v2 at P1 and P2 to the interference time average
at Q. The parameter τ denotes the time difference in arrival from the points
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P1, P2 to Q. Thus, denoting by v(t)P1 , v(t)P2 the complex fields at P1, P2 and
by 2〈v(t)P1 v∗(t)P1〉, 2〈v(t)P2 v∗(t)P2〉 the corresponding light intensities one may
define the complex coherence ϒ(τ ) (Born and Wolf, 1964) as

ϒ12(τ ) = 〈v(t + τ )P1 v∗(t)P2〉
[〈v(t)P1 v∗(t)P1〉〈v(t)P2 v∗(t)P2〉]

1
2

= limT →∞ 1
2T

∫ T

−T
v(t + τ )P1 v∗(t)P2dt

[(limT →∞ 1
2T

∫ T

−T
v(t)P1 v∗(t)P1dt)(limT →∞ 1

2T

∫ T

−T
v(t)P2 v∗(t)P2dt)]

1
2

(A2)

The two Equations (A1)−(A2) were related in (Born and Wolf, 1964) through

2�[〈v1v∗
2〉] = 2(I1I2)

1
2 �[ϒ12(τ )] = 2(I1I2)

1
2 |ϒ12(τ )| cos(β12(τ )), (A3)

where I1, I2 are the intensities at Q from P1, P2 and |ϒ12(τ )|, β12(τ ) are the
modulus and phase of ϒ12(τ ). Note that ϒ12(τ ) is a measure of both the temporal
and spatial aspects of the coherence (Born and Wolf, 1964; Collier et al., 1971).
For τ = 0 one may assume the points P1, P2 at screen A to be at the (x, y) plane
where P1 is located at the origin of this plane. Thus, denoting ϒ12(0) = µs(x, y)
one may write Equation (A2) for this case as

µ(x, y)s =
∫ ∞
−∞ v(0, 0, t)v∗(x, y, t)dt

[ ∫ ∞
−∞ v(0, 0, t)v∗(0, 0, t)dt

∫ ∞
−∞ v(x, y, t)v∗(x, y, t) dt

] 1
2

(A4)

Note that now, in cotrast to ϒ12(τ ) which denotes both temporal and spatial
coherence, µ(x, y)s is the complex spatial coherence of the source in the (x, y)
plane. Note also that if the waves vP1 , vP2 propagate along the same direction
from a point source then v(t)P1 = v(t)P2 and µ(x, y)s = 1 (see Eq. (A4)). In such
a case one may replace in Eq. (A2) (Collier et al., 1971) ϒ12(τ ) by µT (τ ), equate
v(t)P1 = v(t)P2 = v(t), v(t + τ )P1 = v(t + τ ) and write for µT (τ ) which is the
complex temporal coherence

µT (τ ) = limT →∞ 1
2T

∫ T

−T
v(t + τ )v∗(t) dt

limT →∞ 1
2T

∫ T

−T
v(t)v∗(t) dt

(A5)

Substituting in the last equation v(t) = S(x, y, z, t), where S(x, y, z, t) is
given by Equation (3) one obtains

µT (τ ) = ei2πf τ · limT →∞ 1
2T

∫ T

−T
g(t + τ )g∗(t) dt

limT →∞ 1
2T

∫ T

−T
g(t)g∗(t) dt

= ei2πf τ 〈g(t + τ )g∗(t)〉
〈g(t)g∗(t)〉

(A6)
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One may solve the last equation (Collier et al., 1971) for 〈g(t+τ )g∗(t)〉
〈g(t)g∗(t)〉 and

obtains

〈g(t + τ )g∗(t)〉
〈g(t)g∗(t)〉 = µT (τ )e−i2πf τ = µ̂T (τ ) (A7)

Equation (A5) may be Fourier transformed into

µT (τ ) =
∫ ∞
−∞ V(f )V∗(f ) · ei2πf τ df

∫ ∞
−∞ V(f )V∗(f ) df

, (A8)

where V(f ) is the temporal Fourier transform of v(τ ) (Bracewell, 1965; Collier
et al., 1971).
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